Drones (Mar 2024)
Modeling of the Flight Performance of a Plasma-Propelled Drone: Limitations and Prospects
Abstract
The resurgence in interest in aircraft electro-aerodynamic (EAD) propulsion has been sparked due to recent advancements in EAD thrusters, which generate thrust by employing a plasma generated through electrical discharge. With potentially quieter propulsion that could contribute to the generation of lift or the control of attitude, it is important to determine the feasibility of an EAD-propelled airplane. First, the main propulsive characteristics (thrust generation and power consumption) of EAD thrusters were drawn from the literature and compared with existing technologies. Second, an algorithm was developed to couple standard equations of flight with EAD propulsion performance and treat the first-order interactions. It fairly replicated the performance of the only available autonomous EAD-propelled drone. A test case based on an existing commercial UAV of 10 kg equipped with current-generation EAD thrusters anticipated a flight of less than 10 min, lower than 30 m in height, and below 8 m · s −1 in velocity. Achieving over 2 h of flight at 30 m of height at 10 m · s −1 requires the current EAD thrust to be doubled without altering the power consumption. For the same flight performance as the baseline UAV, the prediction asked for a tenfold increase in the thrust at the same power consumption.
Keywords