Radioengineering (Sep 2014)

Maximum Bandwidth Enhancement of Current Mirror using Series-Resistor and Dynamic Body Bias Technique

  • V. Niranjan,
  • A. Kumar,
  • S. B. Jain

Journal volume & issue
Vol. 23, no. 3
pp. 922 – 930

Abstract

Read online

This paper introduces a new approach for enhancing the bandwidth of a low voltage CMOS current mirror. The proposed approach is based on utilizing body effect in a MOS transistor by connecting its gate and bulk terminals together for signal input. This results in boosting the effective transconductance of MOS transistor along with reduction of the threshold voltage. The proposed approach does not affect the DC gain of the current mirror. We demonstrate that the proposed approach features compatibility with widely used series-resistor technique for enhancing the current mirror bandwidth and both techniques have been employed simultaneously for maximum bandwidth enhancement. An important consequence of using both techniques simultaneously is the reduction of the series-resistor value for achieving the same bandwidth. This reduction in value is very attractive because a smaller resistor results in smaller chip area and less noise. PSpice simulation results using 180 nm CMOS technology from TSMC are included to prove the unique results. The proposed current mirror operates at 1Volt consuming only 102 µW and maximum bandwidth extension ratio of 1.85 has been obtained using the proposed approach. Simulation results are in good agreement with analytical predictions.

Keywords