Applied Sciences (Sep 2024)
Activity Enhancement Study of Xinjiang Silica-Alumina Volcanic Rock Powder through Different Activation Processes
Abstract
In response to the dilemma of the scarcity of mineral additions and the high cost of long-distance transport in Hotan, Xinjiang, China, this paper presented an activation process study on the feasibility of volcanic rock powders unique to this region as mineral additions. This study explored the activity-enhancing effects of volcanic rock powder via three methods: physical activation process, chemical activation process, and thermal activation process. The results showed that physical grinding improved the particle size distribution and enhanced the ‘microaggregate’ effect. For every 80 m2/kg increase in specific surface area, the particle size decreased by approximately 0.7 μm, and the 28-day activity index increased by up to 4%. In the chemical activation process, the optimal combination scheme of 6% CaO, 2% CaCO3, and 2% CaSO4·2H2O increased the 28-day strength of volcanic rock powder mortar specimens by approximately 20%, achieving an activity index of 82%. Thermal activation studies showed that the low-temperature heat treatment interval of 300 °C to 700 °C increased the 28 d activity index of volcanic rock powders by 12 to 22 percent. However, when the temperature reached the high-temperature interval of 800 °C to 1400 °C, it, rather, inhibited the activity enhancement. A combination of the three activation methods (physical milling with a specific surface area of 560 m2/kg after heat treatment at 600 °C, chemical activation with 6% CaO, 2% CaCO3, and 2% CaSO4·2H2O) resulted in an activity of up to 86% for the volcanic rock powder. The activity enhancement by different activation methods provided a theoretical basis and practical reference for the application of volcanic rock powder as a mineral additions in Hotan, Xinjiang.
Keywords