The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Aug 2020)

DUAL PYRAMIDS ENCODER-DECODER NETWORK FOR SEMANTIC SEGMENTATION IN GROUND AND AERIAL VIEW IMAGES

  • S. L. Jiang,
  • S. L. Jiang,
  • G. Li,
  • W. Yao,
  • W. Yao,
  • Z. H. Hong,
  • T. Y. Kuc

DOI
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-605-2020
Journal volume & issue
Vol. XLIII-B2-2020
pp. 605 – 610

Abstract

Read online

Semantic segmentation is a fundamental research task in computer vision, which intends to assign a certain category to every pixel. Currently, most existing methods only utilize the deepest feature map for decoding, while high-level features get inevitably lost during the procedure of down-sampling. In the decoder section, transposed convolution or bilinear interpolation was widely used to restore the size of the encoded feature map; however, few optimizations are applied during up-sampling process which is detrimental to the performance for grouping and classification. In this work, we proposed a dual pyramids encoder-decoder deep neural network (DPEDNet) to tackle the above issues. The first pyramid integrated and encoded multi-resolution features through sequentially stacked merging, and the second pyramid decoded the features through dense atrous convolution with chained up-sampling. Without post-processing and multi-scale testing, the proposed network has achieved state-of-the-art performances on two challenging benchmark image datasets for both ground and aerial view scenes.