Catalytic Cascade Dehydration-Etherification of Fructose into 5-Ethoxymethylfurfural with SO3H-Functionalized Polymers

International Journal of Chemical Engineering. 2014;2014 DOI 10.1155/2014/481627

 

Journal Homepage

Journal Title: International Journal of Chemical Engineering

ISSN: 1687-806X (Print); 1687-8078 (Online)

Publisher: Hindawi Publishing Corporation

LCC Subject Category: Technology: Chemical technology: Chemical engineering

Country of publisher: Egypt

Language of fulltext: English

Full-text formats available: PDF, HTML, ePUB, XML

 

AUTHORS

Hu Li (State-Local Joint Laboratory for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China)
Qiuyun Zhang (State-Local Joint Laboratory for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China)
Song Yang (State-Local Joint Laboratory for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 14 weeks

 

Abstract | Full Text

A series of SO3H-functionalized polymers were prepared and employed as heterogeneous catalysts for one-pot transformation of fructose into 5-ethoxymethylfurfural (EMF) that is considered to be one of potential liquid biofuels. A high EMF yield of 72.8% could be obtained at 110°C for 10 h, and the polymeric acid catalysts could be recycled for five times without significant loss of catalytic performance.