Journal of Marine Science and Engineering (Apr 2024)

Rapid Estimation Model for Wake Disturbances in Offshore Floating Wind Turbines

  • Liye Zhao,
  • Yongxiang Gong,
  • Zhiqian Li,
  • Jundong Wang,
  • Lei Xue,
  • Yu Xue

DOI
https://doi.org/10.3390/jmse12040647
Journal volume & issue
Vol. 12, no. 4
p. 647

Abstract

Read online

The precise wake model is crucial for accurately estimating wind farm loads and power, playing a key role in wake control within wind farms. This study proposes a segmented dual-Gaussian wake model, which is built upon existing dual-Gaussian wake models but places greater emphasis on the influence of initial wake generation and evolution processes on the wind speed profile in the near-wake region. The enhanced model optimizes the wake speed profile in the near-wake region and improves the accuracy of wake diffusion throughout the entire flow field. Furthermore, the optimized dual-Gaussian wake model is utilized to estimate the power output and blade root vibration loads in offshore wind farms. Through comparative analysis of high-fidelity simulation results and actual measurement data, the accuracy of the optimized dual-Gaussian wake model is validated. This approach offers high computational efficiency and provides valuable insights for load fluctuations and power estimation, thereby advancing the development of wake control strategies rapidly.

Keywords