BMC Research Notes (Dec 2023)

Hypoxia-mimetic by CoCl2 increases SLC7A5 expression in breast cancer cells in vitro

  • Leonora Canhasi,
  • Elisabet Tina,
  • Anna Göthlin Eremo

DOI
https://doi.org/10.1186/s13104-023-06650-2
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Objective Increased expression of the amino acid transporter solute Carrier Family 7 Member 5 (SLC7A5) has been observed in neoplastic cells during hypoxic conditions in vitro, indicating an adaptation for cell survival. To further explore this, we evaluated hypoxia-mimetic by CoCl2 as a model for hypoxia in breast cancer cell lines and the effect on SLC257A5 expression. Four different breast cancer cell lines (MCF7, T-47D, BT-474 and ZR-75-1) were exposed to 100 µM CoCl2 for 48 h. Subsequently, cell viability, gene- and protein expression analyses were performed. Results The gene expression of VEGF, a marker of hypoxia, was significantly elevated in all four cell lines compared to the control (p < 0.0001), indicating that CoCl2 exposure generates a hypoxic response. Moreover, CoCl2 exposure significantly upregulated SLC7A5 gene expression in T-47D (p < 0.001), BT-474 (p < 0.0001) and ZR-75-1 (p < 0.0001) cells, as compared to vehicle control. Immunofluorescence staining showed increased SLC7A5 protein expression in MCF7, T-47D and BT-474 cells compared to vehicle control. This report suggests that hypoxia-mimetic by CoCl2 can be used as a simple model for inducing hypoxia in breast cancer cell lines and in fact influence SLC7A5 gene and protein expression in vitro.

Keywords