Nature Communications (Apr 2022)

App-based COVID-19 syndromic surveillance and prediction of hospital admissions in COVID Symptom Study Sweden

  • Beatrice Kennedy,
  • Hugo Fitipaldi,
  • Ulf Hammar,
  • Marlena Maziarz,
  • Neli Tsereteli,
  • Nikolay Oskolkov,
  • Georgios Varotsis,
  • Camilla A. Franks,
  • Diem Nguyen,
  • Lampros Spiliopoulos,
  • Hans-Olov Adami,
  • Jonas Björk,
  • Stefan Engblom,
  • Katja Fall,
  • Anna Grimby-Ekman,
  • Jan-Eric Litton,
  • Mats Martinell,
  • Anna Oudin,
  • Torbjörn Sjöström,
  • Toomas Timpka,
  • Carole H. Sudre,
  • Mark S. Graham,
  • Julien Lavigne du Cadet,
  • Andrew T. Chan,
  • Richard Davies,
  • Sajaysurya Ganesh,
  • Anna May,
  • Sébastien Ourselin,
  • Joan Capdevila Pujol,
  • Somesh Selvachandran,
  • Jonathan Wolf,
  • Tim D. Spector,
  • Claire J. Steves,
  • Maria F. Gomez,
  • Paul W. Franks,
  • Tove Fall

DOI
https://doi.org/10.1038/s41467-022-29608-7
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

The app-based COVID Symptom Study was launched in Sweden in April 2020 to contribute to real-time COVID-19 surveillance using daily symptom reports from study participants. Here, the authors show how syndromic surveillance can be used to estimate regional COVID-19 prevalence and to predict later COVID-19 hospital admissions.