Frontiers in Nuclear Engineering (Nov 2023)

Validation of time-dependent shift using the pulsed sphere benchmarks

  • Camille J. Palmer,
  • Jordan Northrop,
  • Todd S. Palmer,
  • Aaron J. Reynolds

DOI
https://doi.org/10.3389/fnuen.2023.1294583
Journal volume & issue
Vol. 2

Abstract

Read online

The detailed behavior of neutrons in a rapidly changing time-dependent physical system is a challenging computational physics problem, particularly when using Monte Carlo methods on heterogeneous high-performance computing architectures. A small number of algorithms and code implementations have been shown to be performant for time-independent (fixed source and k-eigenvalue) Monte Carlo, and there are existing simulation tools that successfully solve the time-dependent Monte Carlo problem on smaller computing platforms. To bridge this gap, a time-dependent version of ORNL’s Shift code has been recently developed. Shift’s history-based algorithm on CPUs, and its event-based algorithm on GPUs, have both been observed to scale well to very large numbers of processors, which motivated the extension of this code to solve time-dependent problems. The validation of this new capability requires a comparison with time-dependent neutron experiments. Lawrence Livermore National Laboratory’s (LLNL) pulsed sphere benchmark experiments were simulated in Shift to validate both the time-independent as well as new time-dependent features recently incorporated into Shift. A suite of pulsed-sphere models was simulated using Shift and compared to the available experimental data and simulations with MCNP. Overall results indicate that Shift accurately simulates the pulsed sphere benchmarks, and that the new time-dependent modifications of Shift are working as intended. Validated exascale neutron transport codes are essential for a wide variety of future multiphysics applications.

Keywords