Journal of Remote Sensing (Jan 2022)
Forest Restoration Potential in China: Implications for Carbon Capture
Abstract
Reforestation is an eco-friendly strategy for countering rising carbon dioxide concentrations in the atmosphere and the negative effects of forest loss and degradation. China, with one of the world’s most considerable afforestation rates, has increased its forest cover from 16.6% 20 years ago to 23.0% by 2020. However, the maximum potential forest coverage achieved via tree planting and restoration is uncertain. To map potential tree coverage across China, we developed a random forest regression model relating environmental factors and appropriate forest types. We estimate 67.2 million hectares of land currently available for tree restoration after excluding existing forested areas, urban areas, and agriculture land covers/uses, which is 50% higher than the current understanding. Converting these lands to the forest would generate 3.99 gigatons of new above- and belowground carbon stocks, representing an important contribution to achieving carbon neutrality. This potential is spatially imbalanced, with the largest restorable carbon potential being located in the southwest (29.5%), followed by the northeast (17.2%) and northwest (16.8%). Our study highlights the need to align tree restoration areas with the uneven distribution of carbon sequestration potential. In addition to being a biological mitigation strategy to partially offset carbon dioxide emissions from fossil fuel burning, reforestation should provide other environmental services such as the restoration of degraded soils, conservation of biological diversity, revitalization of hydrological integrity, localized cooling, and improvement in air quality. Because of the collective benefits of forest restoration, we encourage that such activities be ecosystem focused as opposed to solely focusing on tree planting.