Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requires further research. This paper employs both AutoRL and TL to effectively tackle combinatorial optimization challenges, specifically the asymmetric traveling salesman problem (ATSP) and the sequential ordering problem (SOP). A statistical analysis was conducted to assess the impact of TL on the aforementioned problems. Furthermore, the Auto_TL_RL algorithm was introduced as a novel contribution, combining the AutoRL and TL methodologies. Empirical findings strongly support the effectiveness of this integration, resulting in solutions that were significantly more efficient than conventional techniques, with an 85.7% improvement in the preliminary analysis results. Additionally, the computational time was reduced in 13 instances (i.e., in 92.8% of the simulated problems). The TL-integrated model outperformed the optimal benchmarks, demonstrating its superior convergence. The Auto_TL_RL algorithm design allows for smooth transitions between the ATSP and SOP domains. In a comprehensive evaluation, Auto_TL_RL significantly outperformed traditional methodologies in 78% of the instances analyzed.