International Journal of Applied Earth Observations and Geoinformation (Feb 2024)
Rapid wildfire damage estimation using integrated object-based classification with auto-generated training samples from Sentinel-2 imagery on Google Earth Engine
Abstract
Satellite data are essential during wildfires for understanding its adverse effects and improving the effectiveness of rapid disaster management. However, existing techniques used for damage assessments are inaccurate and lack automation. In this study, we propose an integrated machine learning approach with auto-generated training samples for a rapid wildfire disaster response framework using Sentinel-2 imagery at 10 m resolution from Google Earth Engine (GEE). First, training samples of burned areas were obtained by utilizing textural data based on features that had changed because of the wildfire, and samples of unburned areas were obtained using the normalized difference vegetation index (NDVI). The images were categorized as burned and unburned images using the object-based image analysis (OBIA) classification method. Finally, using the classified maps, burn severity maps and estimated pixel counts for each severity class were generated and compared. The proposed method was implemented to put out a wildfire that broke out in Uljin, Gyeongsangbuk-do, South Korea in March 2022 and the transferability of the model was evaluated in Gangneung, Gangwon-do, South Korea. The study findings indicate that the random forest (RF) classifier acquired the greatest overall accuracy (OA) of 97.6 % in Uljin; additionally, the model transferability performed well in Gangneung with an OA of 93.8 %. The RF also generated the fewest pixels of the unchanged class when the burn severity map was evaluated. Overall, our study proposes a quick and automated approach for estimating wildfire damage that could be used for immediate mitigation actions.