Sensors (Oct 2023)
Tool Wear State Identification Based on SVM Optimized by the Improved Northern Goshawk Optimization
Abstract
Tool wear condition significantly influences equipment downtime and machining precision, necessitating the exploration of a more accurate tool wear state identification technique. In this paper, the wavelet packet thresholding denoising method is used to process the acquired multi-source signals and extract several signal features. The set of features most relevant to the tool wear state is screened out by the support vector machine recursive feature elimination (SVM-RFE). Utilizing these selected features, we propose a tool wear state identification model, which utilizes an improved northern goshawk optimization (INGO) algorithm to optimize the support vector machine (SVM), hereby referred to as INGO-SVM. The simulation tests reveal that INGO demonstrates superior convergence efficacy and stability. Furthermore, a milling wear experiment confirms that this approach outperforms five other methods in terms of recognition accuracy, achieving a remarkable accuracy rate of 97.9%.
Keywords