Opto-Electronic Advances (Sep 2020)
Atomic layer deposition for quantum dots based devices
Abstract
Quantum dots (QDs) are promising candidates for the next-generation optical and electronic devices due to the outstanding photoluminance efficiency, tunable bandgap and facile solution synthesis. Nevertheless, the limited optoelectronic performance and poor lifetime of QDs devices hinder their further applications. As a gas-phase surface treatment method, atomic layer deposition (ALD) has shown the potential in QDs surface modification and device construction owing to the atomic-level control and excellent uniformity/conformality. In this perspective, the attempts to utilize ALD techniques in QDs modification to improve the photoluminance efficiency, stability, carrier mobility, as well as interfacial carrier utilization are introduced. ALD proves to be successful in the photoluminance quantum yield (PLQY) enhancement due to the elimination of QDs surface dangling bonds and defects. The QDs stability and devices lifetime are improved greatly through the introduction of ALD barrier layers. Furthermore, the carrier transport is ameliorated efficiently by infilling interstitial spaces during ALD process. Attributed to the ultra-thin and dense coating on the interface, the improvement on optoelectronic performance is achieved. Finally, the challenges of ALD applications in QDs at present and several prospects including ALD process optimization, in-situ characterization and computational simulations are proposed.
Keywords