Journal of Marine Science and Engineering (Jun 2022)
Numerical Investigation of Breaking Focused Waves and Forces on Coastal Deck Structure with Girders
Abstract
In the present study, breaking focused wave groups were simulated using open-source Computational Fluid Dynamics model REEF3D in order to investigate the breaking wave impact on scaled (1:10) two-dimensional coastal deck structure with girder. The effect of environmental parameters, such as bottom slope and wave steepness on the breaking and geometric properties of high-crested spilling breakers, was investigated. The effect of the wave breaking location on the impact forces acting on the deck structure located at different airgap positions was studied for three wave impact scenarios: (i) when the wave breaking starts, (ii) when a slightly overturning crest is formed, and (iii) when the wave breaks and a fully overturning crest is formed just before hitting the preceding trough. The peak horizontal impact force was found to be higher when the wave breaks ahead of the structure and the overturning wave crest hits the deck positioned above the still water level. Additionally, the peak vertical impact force attains the peak when the deck is placed at the still water level for different stages of breaking. The peak horizontal impact force shows a parabolic trend, whereas the peak vertical impact forces show a decreasing linear trend with an increase in airgap. Finally, force coefficients are derived for calculating the peak impact force on deck with girders subjected to high-crested spilling breakers.
Keywords