Physics (Feb 2022)

Distinctive Features of Charge Exchange Involving the Second Flavor of Hydrogen Atoms—The Candidates for Dark Matter

  • Eugene Oks

DOI
https://doi.org/10.3390/physics4010019
Journal volume & issue
Vol. 4, no. 1
pp. 286 – 293

Abstract

Read online

The second flavor of hydrogen atoms (SFHA) refers to the kind of hydrogen atoms that have only the states of the zero orbital angular momentum (the S-states), both in the discrete and continuous spectra. They were first discovered theoretically in one of my earlier papers, where a proof of their existence was also provided by analyzing atomic experiments concerning the high-energy tail of the linear momentum distribution in the ground state of hydrogen atoms. From a theoretical point of view, the discovery was based on the standard Dirac equation for hydrogen atoms without changing the existing physical laws. Recently, the existence of the SFHA was seemingly also confirmed by two types of astrophysical observations: the allowance for the SFHA explained the puzzling results concerning both the anomalous absorption of the redshifted 21 cm spectral line from the early Universe, and the observations by the Dark Energy Survey (DES) team where it was found that the distribution of dark matter in the Universe is noticeably smoother than predictions employing Einstein’s relativity. In the present review, we exhibit results from two recent papers where attention was brought to a visible difference in the cross-sections of the resonant charge exchange for collisions of the SFHA with incoming protons, compared to collisions of the usual hydrogen atoms with incoming protons. It was shown that, after taking into account the SFHA, there is a better agreement with the corresponding experimental cross-section. Coupled with the previous evidence of the existence of the SFHA, deduced from the analysis of the other kind of atomic experiments, and evidenced by two different kinds of astrophysical observations, this strengthens the standing of the SFHA as the most probable candidate for all or a part of dark matter.

Keywords