International Journal of Multiphysics (Mar 2008)
Flow characteristics of Newtonian and non-Newtonian fluids in a vessel stirred by a 60° pitched blade impeller
Abstract
Mean and rms velocity characteristics of two Newtonian flows at Reynolds numbers of 12,800 (glycerin solution) and 48,000 (water) and of a non-Newtonian flow (0.2% CMC solution, at a power number similar to the Newtonian glycerin flow) in a mixing vessel stirred by a 60° pitched blade impeller have been measured by laser Doppler velocimetry (LDV). The velocity measurements, resolved over 360° and 1.08° of impeller rotation, showed that the mean flow of the two power number matched glycerin and CMC flows were similar to within 3% of the impeller tip velocity and the turbulence intensities generally lower in the CMC flow by up to 5% of the tip velocity. The calculated mean flow quantities showed similar discharge coefficient and pumping efficiency in all three flows and similar strain rate between the two power number matched glycerin and CMC flows; the strain rate of the higher Reynolds number Newtonian flow was found to be slightly higher. The energy balance around the impeller indicated that the CMC flow dissipated up to 9% more of the total input power and converted 7% less into the turbulence compared to the glycerin flow with the same power input which could lead to less effective mixing processes where the micro-mixing is important.