Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning
Alena-K. Golla,
Christian Tönnes,
Tom Russ,
Dominik F. Bauer,
Matthias F. Froelich,
Steffen J. Diehl,
Stefan O. Schoenberg,
Michael Keese,
Lothar R. Schad,
Frank G. Zöllner,
Johann S. Rink
Affiliations
Alena-K. Golla
Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Christian Tönnes
Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Tom Russ
Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Dominik F. Bauer
Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Matthias F. Froelich
Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Steffen J. Diehl
Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Stefan O. Schoenberg
Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Michael Keese
Department of Surgery, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Lothar R. Schad
Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Frank G. Zöllner
Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Johann S. Rink
Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
Abdominal aortic aneurysms (AAA) may remain clinically silent until they enlarge and patients present with a potentially lethal rupture. This necessitates early detection and elective treatment. The goal of this study was to develop an easy-to-train algorithm which is capable of automated AAA screening in CT scans and can be applied to an intra-hospital environment. Three deep convolutional neural networks (ResNet, VGG-16 and AlexNet) were adapted for 3D classification and applied to a dataset consisting of 187 heterogenous CT scans. The 3D ResNet outperformed both other networks. Across the five folds of the first training dataset it achieved an accuracy of 0.856 and an area under the curve (AUC) of 0.926. Subsequently, the algorithms performance was verified on a second data set containing 106 scans, where it ran fully automated and resulted in an accuracy of 0.953 and an AUC of 0.971. A layer-wise relevance propagation (LRP) made the decision process interpretable and showed that the network correctly focused on the aortic lumen. In conclusion, the deep learning-based screening proved to be robust and showed high performance even on a heterogeneous multi-center data set. Integration into hospital workflow and its effect on aneurysm management would be an exciting topic of future research.