Mathematics (Nov 2022)

A Hybrid Delay Aware Clustered Routing Approach Using Aquila Optimizer and Firefly Algorithm in Internet of Things

  • Mehdi Hosseinzadeh,
  • Liliana Ionescu-Feleaga,
  • Bogdan-Ștefan Ionescu,
  • Mahyar Sadrishojaei,
  • Faeze Kazemian,
  • Amir Masoud Rahmani,
  • Faheem Khan

DOI
https://doi.org/10.3390/math10224331
Journal volume & issue
Vol. 10, no. 22
p. 4331

Abstract

Read online

Protocols for clustering and routing in the Internet of Things ecosystem should consider minimizing power consumption. Existing approaches to cluster-based routing issues in the Internet of Things environment often face the challenge of uneven power consumption. This study created a clustering method utilising swarm intelligence to obtain a more even distribution of cluster heads. In this work, a firefly optimization method and an aquila optimizer algorithm are devised to select the intermediate and cluster head nodes required for routing in accordance with the NP-Hard nature of clustered routing. The effectiveness of this hybrid clustering and routing approach has been evaluated concerning the following metrics: remaining energy, mean distances, number of hops, and node balance. For assessing Internet of things platforms, metrics like network throughput and the number of the living node are crucial, as these systems rely on battery-operated equipment to regularly capture environment data and transmit specimens to a base station. Proving effective, the suggested technique has been found to improve system energy usage by at least 18% and increase the packet delivery ratio by at least 25%.

Keywords