Data in Brief (Jun 2018)

Data on mass spectrometry-based proteomics for studying the involvement of CYLD in the ubiquitination events downstream of EGFR activation

  • Virginia Sanchez-Quiles,
  • Nerea Osinalde,
  • Vyacheslav Akimov,
  • Irina Kratchmarova,
  • Blagoy Blagoev

Journal volume & issue
Vol. 18
pp. 1856 – 1863

Abstract

Read online

The present data article corresponds to the proteomic data of the involvement of Cylindromatosis protein (CYLD) in the ubiquitination signaling initiated by EGF stimulation. CYLD tumor suppressor protein has Lys63-chain deubiquitinase activity that has been proved essential for the negative regulation of crucial signaling mechanisms, namely the NFkB pathway. Previous results have suggested the involvement of CYLD in the EGF-dependent signal transduction as well, showing its engagement within the tyrosine-phosphorylated complexes formed following the addition of the growth factor. EGFR signaling participates in central cellular processes and its tight regulation, partly through ubiquitination cascades, is decisive for a balanced cellular homeostasis. We carried out the substitution of the endogenous pool of ubiquitin for a His-FLAG-tagged ubiquitin (Stable Ubiquitin Exchange, StUbEx), in combination with the shRNA silencing of CYLD and SILAC-labeling on HeLa cells. The subsequent tandem affinity purification of ubiquitinated proteins in control and CYLD-depleted cells was followed by mass spectrometric analysis. Therefore, we present an unbiased study investigating the impact of CYLD in the EGF-dependent ubiquitination. The data supplied herein is related to the research article entitled “Cylindromatosis tumor suppressor protein (CYLD) deubiquitinase is necessary for proper ubiquitination and degradation of the epidermal growth factor receptor” (Sanchez-Quiles et al., 2017) [1]. We provide the associated mass spectrometry raw files, excel tables and gene ontology enrichments. The data have been deposited in the ProteomeXchange with the identifier PXD003423.