BMC Medical Informatics and Decision Making (Mar 2020)

A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network

  • Yan-Bin Wang,
  • Zhu-Hong You,
  • Shan Yang,
  • Hai-Cheng Yi,
  • Zhan-Heng Chen,
  • Kai Zheng

DOI
https://doi.org/10.1186/s12911-020-1052-0
Journal volume & issue
Vol. 20, no. S2
pp. 1 – 9

Abstract

Read online

Abstract Background The key to modern drug discovery is to find, identify and prepare drug molecular targets. However, due to the influence of throughput, precision and cost, traditional experimental methods are difficult to be widely used to infer these potential Drug-Target Interactions (DTIs). Therefore, it is urgent to develop effective computational methods to validate the interaction between drugs and target. Methods We developed a deep learning-based model for DTIs prediction. The proteins evolutionary features are extracted via Position Specific Scoring Matrix (PSSM) and Legendre Moment (LM) and associated with drugs molecular substructure fingerprints to form feature vectors of drug-target pairs. Then we utilized the Sparse Principal Component Analysis (SPCA) to compress the features of drugs and proteins into a uniform vector space. Lastly, the deep long short-term memory (DeepLSTM) was constructed for carrying out prediction. Results A significant improvement in DTIs prediction performance can be observed on experimental results, with AUC of 0.9951, 0.9705, 0.9951, 0.9206, respectively, on four classes important drug-target datasets. Further experiments preliminary proves that the proposed characterization scheme has great advantage on feature expression and recognition. We also have shown that the proposed method can work well with small dataset. Conclusion The results demonstration that the proposed approach has a great advantage over state-of-the-art drug-target predictor. To the best of our knowledge, this study first tests the potential of deep learning method with memory and Turing completeness in DTIs prediction.

Keywords