International Journal of Agronomy (Jan 2012)

Corn-Soybean Rotation Systems in the Mississippi Delta: Implications on Mycotoxin Contamination and Soil Populations of Aspergillus flavus

  • Hamed K. Abbas,
  • Nacer Bellaloui,
  • Robert M. Zablotowicz,
  • H. Arnold Bruns,
  • Anne M. Gillen

DOI
https://doi.org/10.1155/2012/935463
Journal volume & issue
Vol. 2012

Abstract

Read online

The effect of corn-soybean rotation on mycotoxin contamination in corn (Zea mays L.) and soybean (Glycine max L. Merrill.) grains has not been fully evaluated. Therefore, this research investigated the effect of corn-soybean rotation on aflatoxin and fumonisin contamination in respective grains. The results showed that aflatoxin levels in soybean averaged 2.3, <0.5, 0.6, and 6.8 ng/g in 2005, 2006, 2007, and 2008, while corn aflatoxin levels were 16.7, 37.1, 2.4, and 54.8 ng/g, respectively. Aspergillus flavus colonization was significantly greater (P≤0.05) in corn (log 1.9, 2.9, and 4.0 cfu/g) compared to soybean (<1.3, 2.6, and 2.7 cfu/g) in 2005, 2007, and 2008, respectively. Aflatoxigenic A. flavus isolates were more frequent in corn than in soybean in all four years. Higher fumonisin levels were found in corn (0.2 to 3.6 μg/g) than in soybean (<0.2 μg/g). Rotating soybean with corn reduces the potential for aflatoxin contamination in corn by reducing A. flavus propagules in soil and grain and reducing aflatoxigenic A. flavus colonization. These results demonstrated that soybean grain is less susceptible to aflatoxin contamination compared to corn due to a lower level of colonization by A. flavus with a greater occurrence of non-aflatoxigenic isolates.