Physical Review Physics Education Research (Sep 2019)
Calculus-enhanced energy-first curriculum for introductory physics improves student performance locally and in downstream courses
Abstract
Here we demonstrate the benefits of a new curriculum for introductory calculus-based physics that motivates classical mechanics using a modified version of Hamiltonian mechanics. This curriculum shifts the initial focus of instruction away from forces and the associated vector mathematics, which are known to be problematic for students, to the scalar quantity energy, which is more closely aligned with their previously established intuition, and associated differential and integral calculus. We show that implementation of this calculus-enhanced “energy-first” curriculum resulted in higher normalized gains on the Force Concept Inventory exam for all students and improved performance in downstream engineering courses for students with lower ACT math scores. In other words, the downstream benefits were largest for students with lower math abilities who also pose a larger retention risk. This new curriculum thus has the potential to improve student retention by specifically helping the students who need help the most, including traditionally underserved populations who often have weaker mathematics preparation. We propose future work to investigate whether this new curriculum has lowered the math transference barrier to learning in introductory physics, resulting concomitantly in improvements in student learning of classical mechanics and in student fluency with applied mathematics.