Acta Biomedica Scientifica (Jun 2024)

Possibilities of using neural network analysis in the diagnosis of dry eye syndrome

  • E. S. Taskina,
  • A. A. Solovyova,
  • V. A. Mudrov,
  • S. V. Kharintseva

DOI
https://doi.org/10.29413/ABS.2024-9.2.16
Journal volume & issue
Vol. 9, no. 2
pp. 161 – 171

Abstract

Read online

The prevalence rate of dry eye syndrome varies from 6.5 to 95 %. Diagnostic criteria are based on different methods and/or their combinations and are characterized by heterogeneity.The aim of the study. To identify the risk factors for the development of dry eye syndrome in order to create a technology for early diagnosis of the degree of the disease in young people without concomitant ocular and general somatic pathology.Materials and methods. Fifty patients aged 24 [22; 27] years were examined. We carried out an ophthalmological examination, including autorefractometry, visometry, biomicroscopy, the Norn test, a survey using the author’s questionnaire, and an assessment of the degree of dry eye syndrome using the Ocular Surface Disease Index (OSDI). Three study groups were formed: control group (OSDI = 0–13 points); group 1 – patients with OSDI = 14–22 points; group 2 – patients with OSDI > 22 points.Results. When examining presented independent variables, screen time had the highest normalized importance (100 %), followed by tear film breakup time (58.4 %), smoking (24.3 %), night shifts (22.5 %) and using soft contact lenses (11.1 %). The technology for early diagnosis of the degree of dry eye syndrome is implemented on the basis of a multilayer perceptron, the percentage of incorrect predictions during its training process was 8.0 %. The structure of the trained neural network included 8 input neurons (the value of screen time and tear film breakup time, the presence or absence of smoking, night shifts and/or the use of soft contact lenses), two hidden layers containing 3 and 2 units, respectively, and 3 output neurons.Conclusion. The proposed neural network has no difficulties in assessing the early diagnosis of the severity of dry eye syndrome and can be used in clinical practice.

Keywords