Majallah-i Dānishgāh-i ̒Ulūm-i Pizishkī-i Qum (Jan 2021)
In Vitro Evaluation of Cytotoxic Effects of Nickel Oxide Nanoparticles on Human Neuroblastoma Cell Line (SH-SY5Y)
Abstract
Background and Objectives: Despite the many applications of nickel oxide nanoparticles (Nio NPs) in industry and biomedicine, limited studies have been performed in the case of the cytotoxicity of these nanoparticles onnervous system yet. In many neurobiological studies, the human neuroblastoma cells (SH-SY5Y) wich have the ability to become adult human neurons have been used. The aim of the present study was to evaluate the cytotoxicity effects of nickel oxide nanoparticles on human neuroblastoma cell line (SH-SY5Y) in vitro. Methods: The effect of different doses of NiO NPs (0, 1, 10, 20, 50, 100 μg/ml) on SH-SY5Y cell line was determined by MTT, lactate dehydrogenase (LDH), and caspase-3 activity tests. Statistical analysis was performed by using SPSS software and student t-test. Results: Based on the results of MTT test, the viability rate of SH-SY5Y cells were decreased dose dependently after 24 hours treatment with NiO NPs, compared with control group. While there was no significant increase in levels of LDH enzyme compared with control group. The activity of caspase-3 enzyme was also significantly increased in a dose dependent pattern of nanoparticles. Conclusion: The results of the present study showed that the Nickel oxide nanoparticles do not cause membrane damage in SH-SY5Y cells. While these nanoparticles induce their toxic effects by damaging the mitochondrial membrane, increasing the caspase 3 activity, and activating the apoptotic pathway.