Simulation and optimization of an industrial PSA unit

Brazilian Journal of Chemical Engineering. 2000;17(4-7):695-704


Journal Homepage

Journal Title: Brazilian Journal of Chemical Engineering

ISSN: 0104-6632 (Print); 1678-4383 (Online)

Publisher: Brazilian Society of Chemical Engineering

LCC Subject Category: Technology: Chemical technology: Chemical engineering

Country of publisher: Brazil

Language of fulltext: English

Full-text formats available: PDF, HTML, XML



Barg C.
Ferreira J.M.P.
Trierweiler J.O.
Secchi A.R.


Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 12 weeks


Abstract | Full Text

The Pressure Swing Adsorption (PSA) units have been used as a low cost alternative to the usual gas separation processes. Its largest commercial application is for hydrogen purification systems. Several studies have been made about the simulation of pressure swing adsorption units, but there are only few reports on the optimization of such processes. The objective of this study is to simulate and optimize an industrial PSA unit for hydrogen purification. This unit consists of six beds, each of them have three layers of different kinds of adsorbents. The main impurities are methane, carbon monoxide and sulfidric gas. The product stream has 99.99% purity in hydrogen, and the recovery is around 90%. A mathematical model for a commercial PSA unit is developed. The cycle time and the pressure swing steps are optimized. All the features concerning with complex commercial processes are considered.