Peculiarities of Hematite Reduction Using Waste Activated Sludge (WAS) Carbonization Products
Abigail Parra Parra,
Marina Vlasova,
Pedro Antonio Márquez Aguilar,
Jorge Luis Hernández Morelos,
Manuel Eduardo Serrano Nava
Affiliations
Abigail Parra Parra
Center for Research in Engineering and Applied Sciences, Morelos State Autonomous University (CIICAp-UAEMor), Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Marina Vlasova
Center for Research in Engineering and Applied Sciences, Morelos State Autonomous University (CIICAp-UAEMor), Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Pedro Antonio Márquez Aguilar
Center for Research in Engineering and Applied Sciences, Morelos State Autonomous University (CIICAp-UAEMor), Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Jorge Luis Hernández Morelos
Center for Research in Engineering and Applied Sciences, Morelos State Autonomous University (CIICAp-UAEMor), Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Manuel Eduardo Serrano Nava
Center for Research in Engineering and Applied Sciences, Morelos State Autonomous University (CIICAp-UAEMor), Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
In the present study, XRD, SEM/EDS, Raman, EMR/EPR spectroscopy, and vibrating sample magnetometry (VSM) were used to analyze the reduction of hematite by the carbonization products of waste activated sludge (WAS) at 500–1000 °C. The reduction process includes the following steps: α-Fe2O3 → Fe2O3 + Fe3O4 (Ttr~500 °C) → Fe3O4 (Ttr~600–700 °C) → FeO → Feamorph. (Ttr~1000 °C). The prevalence of certain phase compositions at different hematite reduction temperatures makes it possible to predict the areas viable for the application of reduced oxides: adsorbents (after Ttr~500 °C) → soft ferromagnetic materials (after Ttr~600–700 °C) → electrically engineered amorphous iron (after Ttr~1000 °C).