Engineering Proceedings (Dec 2023)

Wireless Communication Technologies for Smart Grid Distribution Networks

  • Juan Carlos Rodriguez,
  • Felipe Grijalva,
  • Marcelo García,
  • Diana Estefanía Chérrez Barragán,
  • Byron Alejandro Acuña Acurio,
  • Henry Carvajal

DOI
https://doi.org/10.3390/engproc2023047007
Journal volume & issue
Vol. 47, no. 1
p. 7

Abstract

Read online

The modernization of the current electric power grid into a smart grid requires the integration of advanced instrumentation, automation, and communication technologies to optimize efficiency, safety, and reliability. In traditional power grids, communication and control tasks are concentrated in substations, limiting their coverage to high-power equipment. As distributed energy resources increase in different sections of the grid, power flow becomes bi-directional. This requires monitoring and control at the Transmission and Distribution (T&D) level, which forms the largest portion of the power grid. To achieve efficient energy flow management and enable consumer participation in demand management, the integration of information and communication technologies (ICTs) is essential. Wireless sensor networks (WSNs) have been identified as a suitable solution for communications within the distribution network. An ongoing challenge, however, is the definition of the best candidates to solve this problem, among the currently available wireless technologies. This paper reviews different wireless communication technologies that provide robustness, reliability, speed, scalability, and cost-effectiveness for monitoring distribution lines. An outline of the architecture for smart grid communications, the definition of sensor network requirements for power line environments, and an overview of specific studies focusing on technology comparisons are the main contributions of this paper. The purpose of this review is to delineate current technologies in order to establish potential future research directions within the field.

Keywords