Ultrathin Sicopion Composite Cation-Exchange Membranes: Characteristics and Electrodialytic Performance following a Conditioning Procedure

International Journal of Chemical Engineering. 2012;2012 DOI 10.1155/2012/932723

 

Journal Homepage

Journal Title: International Journal of Chemical Engineering

ISSN: 1687-806X (Print); 1687-8078 (Online)

Publisher: Hindawi Publishing Corporation

LCC Subject Category: Technology: Chemical technology: Chemical engineering

Country of publisher: Egypt

Language of fulltext: English

Full-text formats available: PDF, HTML, ePUB, XML

 

AUTHORS

Erik Ayala-Bribiesca (Dairy Science and Technology Group (STELA), Institute of Nutraceuticals and Functional Foods (INAF) and Department of Food Sciences and Nutrition, Pavillon Paul Comtois, Laval University, Sainte-Foy, QC, G1V 0A6, Canada)
Mario Boucher (SiM Composites, 4925 Rue Lionel Groulx, Bureau 11, Saint-Augustin-de-Desmaures, QC, G3A 1V1, Canada)
Laurent Bazinet (Dairy Science and Technology Group (STELA), Institute of Nutraceuticals and Functional Foods (INAF) and Department of Food Sciences and Nutrition, Pavillon Paul Comtois, Laval University, Sainte-Foy, QC, G1V 0A6, Canada)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 14 weeks

 

Abstract | Full Text

The aim of this work was to investigate the properties of Sicopion membranes: an ultrathin (≈20 μm) composite cation-exchange membrane (CEM) made from sulphonated poly(ether-ether-ketone) (SPEEK) containing different levels of sulphonic-functionalized silica particles (SFSPs). Sicopion membranes were conditioned according to the French Normalization Association procedure, consisting in a series of acid and alkaline washes, and their electrodialytic characteristics were compared to an existent commercial food-grade membrane (CMX-SB). Electrical conductivity of Sicopion membranes was higher than that of CMX-SB membranes (9.92 versus 6.98 mS/cm), as well as their water content (34.0 versus 27.6%). As the SFSP level was reduced, the ion-exchange capacity (IEC) of Sicopion membranes increased. Concerning their electrodialytic performances, Sicopion membranes presented a lower demineralization rate than CMX-SB membranes (35.9 versus 45.5%), due to an OH− leakage through the pores created by dislodging the SFSP particles during the conditioning procedure.