Computers (Mar 2024)
Inverse Trigonometric Fuzzy Preference Programming to Generate Weights with Optimal Solutions Implemented on Evaluation Criteria in E-Learning
Abstract
Nielsen’s heuristics are widely recognized for usability evaluation, but they are often considered insufficiently specific for assessing particular domains, such as e-learning. Currently, e-learning plays a pivotal role in higher education because of the shift in the educational paradigm from a teacher-centered approach to a student-centered approach. The criteria utilized in multiple sets of heuristics for evaluating e-learning are carefully examined based on the definitions of each criterion. If there are similarities in meaning among these criteria, they are consolidated into a single criterion, resulting in the creation of 20 new criteria (spanning three primary aspects) for the evaluation of e-learning. These 20 new criteria encompass key aspects related to the user interface, learning development, and motivation. Each aspect is assigned a weight to facilitate prioritization when implementing improvements to evaluate e-learning, which is especially beneficial for institutions with limited resources responsible for the relevant units. In terms of weighting, there is room for enhancement to attain more optimal weighting outcomes by employing a Fuzzy Preference Programming method known as Inverse Trigonometric Fuzzy Preference Programming (ITFPP). The higher the assigned weight, the greater the priority for implementing improvements.
Keywords