Chinese Medical Journal (Jan 2018)

Hydrogen Sulfide Regulating Myocardial Structure and Function by Targeting Cardiomyocyte Autophagy

  • Qing-You Zhang,
  • Hong-Fang Jin,
  • Selena Chen,
  • Qing-Hua Chen,
  • Chao-Shu Tang,
  • Jun-Bao Du,
  • Ya-Qian Huang

DOI
https://doi.org/10.4103/0366-6999.228249
Journal volume & issue
Vol. 131, no. 7
pp. 839 – 844

Abstract

Read online

Objective: Hydrogen sulfide (H2S), a gaseous signal molecule, plays a crucial role in many pathophysiologic processes in the cardiovascular system. Autophagy has been shown to participate in the occurrence of many cardiac diseases. Increasing evidences indicated that H2S regulates myocardial structure and function in association with the altered autophagy and plays a “switcher” role in the autophagy of myocardial diseases. The aim of this review was to summarize these insights and provide the experimental evidence that H2S targets cardiomyocyte autophagy to regulate cardiovascular function. Data Sources: This review was based on data in articles published in the PubMed databases up to October 30, 2017, with the following keywords: “hydrogen sulfide,” “autophagy,” and “cardiovascular diseases.” Study Selection: Original articles and critical reviews on H2S and autophagy were selected for this review. Results: When autophagy plays an adaptive role in the pathogenesis of diseases, H2S restores autophagy; otherwise, when autophagy plays a detrimental role, H2S downregulates autophagy to exert a cardioprotective function. For example, H2S has beneficial effects by regulating autophagy in myocardial ischemia/reperfusion and plays a protective role by inhibiting autophagy during the operation of cardioplegia and cardiopulmonary bypass. H2S postpones cardiac aging associated with the upregulation of autophagy but improves the left ventricular function of smoking rats by lowering autophagy. Conclusions: H2S exerts cardiovascular protection by regulating autophagy. Cardiovascular autophagy would likely become a potential target of H2S therapy for cardiovascular diseases.

Keywords