Atmosphere (Oct 2015)

Inland Concentrations of Cl2 and ClNO2 in Southeast Texas Suggest Chlorine Chemistry Significantly Contributes to Atmospheric Reactivity

  • Cameron B. Faxon,
  • Jeffrey K. Bean,
  • Lea Hildebrandt Ruiz

DOI
https://doi.org/10.3390/atmos6101487
Journal volume & issue
Vol. 6, no. 10
pp. 1487 – 1506

Abstract

Read online

Measurements of molecular chlorine (Cl2), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5) were taken as part of the DISCOVER-AQ Texas 2013 campaign with a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) using iodide (I-) as a reagent ion. ClNO2 concentrations exceeding 50 ppt were regularly detected with peak concentrations typically occurring between 7:00 a.m. and 10:00 am. Hourly averaged Cl2 concentrations peaked daily between 3:00 p.m. and 4:00 p.m., with a 29-day average of 0.9 ± 0.3 (1σ) ppt. A day-time Cl2 source of up to 35 ppt∙h−1 is required to explain these observations, corresponding to a maximum chlorine radical (Cl•) production rate of 70 ppt∙h−1. Modeling of the Cl2 source suggests that it can enhance daily maximum O3 and RO2• concentrations by 8%–10% and 28%–50%, respectively. Modeling of observed ClNO2 assuming a well-mixed nocturnal boundary layer indicates O3 and RO2• enhancements of up to 2.1% and 38%, respectively, with a maximum impact in the early morning. These enhancements affect the formation of secondary organic aerosol and compliance with air quality standards for ozone and particulate matter.

Keywords