Heliyon (Sep 2024)
A comprehensive learning based swarm optimization approach for feature selection in gene expression data
Abstract
Gene expression data analysis is challenging due to the high dimensionality and complexity of the data. Feature selection, which identifies relevant genes, is a common preprocessing step. We propose a Comprehensive Learning-Based Swarm Optimization (CLBSO) approach for feature selection in gene expression data. CLBSO leverages the strengths of ants and grasshoppers to efficiently explore the high-dimensional search space. Ants perform local search and leave pheromone trails to guide the swarm, while grasshoppers use their ability to jump long distances to explore new regions and avoid local optima. The proposed approach was evaluated on several publicly available gene expression datasets and compared with state-of-the-art feature selection methods. CLBSO achieved an average accuracy improvement of 15% over the original high-dimensional data and outperformed other feature selection methods by up to 10%. For instance, in the Pancreatic cancer dataset, CLBSO achieved 97.2% accuracy, significantly higher than XGBoost-MOGA's 84.0%. Convergence analysis showed CLBSO required fewer iterations to reach optimal solutions. Statistical analysis confirmed significant performance improvements, and stability analysis demonstrated consistent gene subset selection across different runs. These findings highlight the robustness and efficacy of CLBSO in handling complex gene expression datasets, making it a valuable tool for enhancing classification tasks in bioinformatics.