Applied Sciences (Oct 2024)
Quadcopters in Smart Agriculture: Applications and Modelling
Abstract
Despite technological growth and worldwide advancements in various fields, the agriculture sector continues to face numerous challenges such as desertification, environmental pollution, resource scarcity, and the excessive use of pesticides and inorganic fertilizers. These unsustainable problems in agricultural field can lead to land degradation, threaten food security, affect the economy, and put human health at risk. To mitigate these global issues, it is essential for researchers and agricultural professionals to promote advancements in smart agriculture by integrating modern technologies such as Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), Wireless Sensor Networks (WSNs), and more. Among these technologies, this paper focuses on UAVs, particularly quadcopters, which can assist in each phase of the agricultural cycle and improve productivity, quality, and sustainability. With their diverse capabilities, quadcopters have become the most widely used UAVs in smart agriculture and are frequently utilized by researchers in various projects. To explore the different aspects of quadcopters’ use in smart agriculture, this paper focuses on the following: (a) the unique advantages of quadcopters over other UAVs, including an examination of the quadcopter types particularly used in smart agriculture; (b) various agricultural missions where quadcopters are deployed, with examples highlighting their indispensable role; (c) the modelling of quadcopters, from configurations to the derivation of mathematical equations, to create a well-modelled system that closely represents real-world conditions; and (d) the challenges that must be addressed, along with suggestions for future research to ensure sustainable development. Although the use of UAVs in smart agriculture has been discussed in other papers, to the best of our knowledge, none have specifically examined the most popular among them, “quadcopters”, and their particular use in smart agriculture in terms of types, applications, and modelling techniques. Therefore, this paper provides a comprehensive survey of quadcopters’ use in smart agriculture and offers researchers and engineers valuable insights into this evolving field, presenting a roadmap for future enhancements and developments.
Keywords