Machine Learning: Science and Technology (Jan 2024)

Unification of symmetries inside neural networks: transformer, feedforward and neural ODE

  • Koji Hashimoto,
  • Yuji Hirono,
  • Akiyoshi Sannai

DOI
https://doi.org/10.1088/2632-2153/ad5927
Journal volume & issue
Vol. 5, no. 2
p. 025079

Abstract

Read online

Understanding the inner workings of neural networks, including transformers, remains one of the most challenging puzzles in machine learning. This study introduces a novel approach by applying the principles of gauge symmetries, a key concept in physics, to neural network architectures. By regarding model functions as physical observables, we find that parametric redundancies of various machine learning models can be interpreted as gauge symmetries. We mathematically formulate the parametric redundancies in neural ODEs, and find that their gauge symmetries are given by spacetime diffeomorphisms, which play a fundamental role in Einstein’s theory of gravity. Viewing neural ODEs as a continuum version of feedforward neural networks, we show that the parametric redundancies in feedforward neural networks are indeed lifted to diffeomorphisms in neural ODEs. We further extend our analysis to transformer models, finding natural correspondences with neural ODEs and their gauge symmetries. The concept of gauge symmetries sheds light on the complex behavior of deep learning models through physics and provides us with a unifying perspective for analyzing various machine learning architectures.

Keywords