Mathematics and Modeling in Finance (Sep 2023)
Improving financial investment by deep learning method: predicting stock returns of Tehran stock exchange companies
Abstract
Safe investment can be experienced by incorporating human experience and modern predicting science. Artificial Intelligence (AI) plays a vital role in reducing errors in this winning layout. This study aims at performance analysis of Deep Learning (DL) and Machine Learning (ML) methods in modellingand predicting the stock returns time series based on the return rate of previous periods and a set of exogenous variables. The data used includes the weekly data of the stock return index of 200 companies included in the Tehran Stock Exchange market from 2016 to 2021. Two Long Short-Term Memory (LSTM)and Deep Q-Network (DQN) models as DL processes and two Random Forest (RF) and Support Vector Machine (SVM) models as ML algorithms were selected. The results showed the superiority of DLalgorithms over ML, which can indicate the existence of strong dependence patterns in these time series, as well as relatively complex nonlinear relationships with uncertainty between the determinant variables. Meanwhile, LSTM with R-squared equals to 87 percent and the analysis of the results of five other evaluation models have shown the highest accuracy and the least error of prediction. On the other hand, the RF model results in the least prediction accuracy by including the highest amount of error.
Keywords