Discussiones Mathematicae Graph Theory (Feb 2022)

Toughness, Forbidden Subgraphs, and Hamilton-Connected Graphs

  • Zheng Wei,
  • Broersma Hajo,
  • Wang Ligong

DOI
https://doi.org/10.7151/dmgt.2247
Journal volume & issue
Vol. 42, no. 1
pp. 187 – 196

Abstract

Read online

A graph G is called Hamilton-connected if for every pair of distinct vertices {u, v} of G there exists a Hamilton path in G that connects u and v. A graph G is said to be t-tough if t·ω(G − X) ≤ |X| for all X ⊆ V (G) with ω(G − X) > 1. The toughness of G, denoted τ (G), is the maximum value of t such that G is t-tough (taking τ (Kn) = ∞ for all n ≥ 1). It is known that a Hamilton-connected graph G has toughness τ (G) > 1, but that the reverse statement does not hold in general. In this paper, we investigate all possible forbidden subgraphs H such that every H-free graph G with τ (G) > 1 is Hamilton-connected. We find that the results are completely analogous to the Hamiltonian case: every graph H such that any 1-tough H-free graph is Hamiltonian also ensures that every H-free graph with toughness larger than one is Hamilton-connected. And similarly, there is no other forbidden subgraph having this property, except possibly for the graph K1 ∪ P4 itself. We leave this as an open case.

Keywords