Pharmaceutics (Oct 2020)

Synthesis of Biocompatible and Environmentally Nanofibrous Mats Loaded with Moxifloxacin as a Model Drug for Biomedical Applications

  • Mahmoud H. Teaima,
  • Fatma A. Abdelnaby,
  • Maha Fadel,
  • Mohamed A. El-Nabarawi,
  • Kamel R. Shoueir

DOI
https://doi.org/10.3390/pharmaceutics12111029
Journal volume & issue
Vol. 12, no. 11
p. 1029

Abstract

Read online

Biopolymeric chitosan structure (Cs) is rationally investigated owing to its potentiality in pharmaceutical applications. The synthetic routes of biomimetic Cs-based blend electrospun nanofibers were studied. Herein, biocompatible crosslinked electrospun polyvinyl alcohol (PVA)/Cs-reduced gold nanoparticles (Cs(Rg))/β-CD (beta-cyclodextrin) in pure water were fabricated. To this end, supportive PVA as a carrier, Cs bio modifier, and gold reductant and β-CD as smoother, inclusion guest molecule, and capping agent exhibit efficient entrapment of moxifloxacin (Mox) and consequently accelerate release. Besides, PVA/Cs(Rg)/β-CD paves towards controlled drug encapsulation-release affinity, antimicrobial, and for wound dressing. Without losing the nanofiber structure, the webs prolonged stability for particle size and release content up to 96.4%. The synergistic effect of the nanoformulation PVA/Cs(Rg)/β-CD against pathogenic bacteria, fungus, and yeast, including Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger, posed clear zones up to 53 φmm. Furthermore, a certain combination of PVA/Cs (Rg)/β-CD showed a total antioxidant capacity of 311.10 ± 2.86 mg AAE/g sample. In vitro cytotoxicity assay of HePG2 and MCF-7 NF6 can eradicate 34.8 and 29.3 µg/mL against selected cells.

Keywords