Molecules (Oct 2022)

Isolation and Identification of Antioxidative Peptide from Goose Liver Hydrolysate to Ameliorate Alcohol-Mediated Oxidative Stress Damage in HHL-5 Hepatocytes

  • Yeye Du,
  • Zhihong Chen,
  • Haiyang Wei,
  • Shuangjie Zhu,
  • Kezhou Cai

DOI
https://doi.org/10.3390/molecules27217151
Journal volume & issue
Vol. 27, no. 21
p. 7151

Abstract

Read online

The aim of this study was to isolate and identify antioxidative peptide from goose liver hydrolysate (GLHP) for ameliorating oxidative stress damage by alcohol in HHL-5 hepatocytes. In this research, the target antioxidative peptides in GLHP were separated, purified, and identified via a tangential flow ultrafiltration system combined with size exclusion chromatography (SEC), ion exchange chromatography (IEC), reversed-phase liquid chromatography (RP-LC), and LC-MS/MS. The results suggested that the amino acid sequence of the target antioxidative peptide for ameliorating alcohol-mediated oxidative stress damage in HHL-5 hepatocytes was Leu-Pro-Leu-Pro-Phe-Pro (LPLPFP), which had a molecular weight of 683.41 Da, and was derived from NADH-ubiquinone oxidoreductase chain 1 in goose liver. In addition, LPLPFP was confirmed to have a satisfactory stability and maintained high hepatic protective activity in a simulated gastrointestinal digestion. Moreover, the mechanism of LPLPFP prevented against oxidative stress damage in HHL-5 hepatocytes was attributed to inhibiting the production of reactive oxide species (ROS) by upregulating genes expression in the Ahr-NQO1 signal pathway. In conclusion, these results indicated that dietary GLHP supplementation could ameliorate alcohol-mediated oxidative stress damage and provide an affordable dietary intervention strategy to prevent alcohol-mediated hepatocyte damage.

Keywords