Technology in Cancer Research & Treatment (Dec 2022)

Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor

  • Xiangyu Zhang MM,
  • Xinyu Song MM,
  • Guangjun Li MS,
  • Lian Duan BE,
  • Guangyu Wang MM,
  • Guyu Dai MM,
  • Ying Song PhD,
  • Jing Li PhD,
  • Sen Bai MS

DOI
https://doi.org/10.1177/15330338221143224
Journal volume & issue
Vol. 21

Abstract

Read online

Objectives: The complexity and specificity of lung tumor motion render it necessary to determine the external and internal correlation individually before applying indirect tumor tracking. However, the correlation cannot be determined from patient respiratory and tumor clinical characteristics before treatment. The purpose of this study is to present a machine learning model for an external/internal correlation prediction that is based on computed tomography (CT) radiomic features. Methods: 4-dimensional computed tomography (4DCT) images of 67 patients were collected retrospectively, and the external/internal correlation of lung tumor was calculated based on Spearman's rank correlation coefficient. Radiomic features were extracted from average intensity projection and the light gradient boosting machine (LightGBM)-based cross-validation (the recursive elimination method) was used for feature selection. The LightGBM framework forecasting models with classification thresholds 0.7, 0.8, and 0.9 are established using stratified 5-fold cross-validation. Model performance was assessed using receiver operating characteristics, sensitivity, and specificity. Results: There were 16, 18, and 13 features selected for models 0.7, 0.8, and 0.9, respectively. Texture features are of great importance in external/internal correlation prediction compared to other features in all models. The sensitivities of the predictions in models 0.7, 0.8, and 0.9 were 0.800 ± 0.126, 0.829 ± 0.140, and 0.864 ± 0.086, respectively. The specificities were 0.771 ± 0.114, 0.936 ± 0.0581, and 0.839 ± 0.101, whereas the area under the curve (AUC) was 0.837, 0.946, and 0.877, respectively. Conclusions: Our findings indicate that radiomics is an effective tool for respiratory motion correlation prediction, which can extract tumor motion characteristics. We proposed a machine learning framework for correlation prediction in the motion management strategy for lung tumor patients.