Recent Development of Neural Microelectrodes with Dual-Mode Detection
Meng Xu,
Yuewu Zhao,
Guanghui Xu,
Yuehu Zhang,
Shengkai Sun,
Yan Sun,
Jine Wang,
Renjun Pei
Affiliations
Meng Xu
CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Yuewu Zhao
CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Guanghui Xu
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
Yuehu Zhang
CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Shengkai Sun
CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Yan Sun
CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Jine Wang
CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Renjun Pei
CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
Neurons communicate through complex chemical and electrophysiological signal patterns to develop a tight information network. A physiological or pathological event cannot be explained by signal communication mode. Therefore, dual-mode electrodes can simultaneously monitor the chemical and electrophysiological signals in the brain. They have been invented as an essential tool for brain science research and brain-computer interface (BCI) to obtain more important information and capture the characteristics of the neural network. Electrochemical sensors are the most popular methods for monitoring neurochemical levels in vivo. They are combined with neural microelectrodes to record neural electrical activity. They simultaneously detect the neurochemical and electrical activity of neurons in vivo using high spatial and temporal resolutions. This paper systematically reviews the latest development of neural microelectrodes depending on electrode materials for simultaneous in vivo electrochemical sensing and electrophysiological signal recording. This includes carbon-based microelectrodes, silicon-based microelectrode arrays (MEAs), and ceramic-based MEAs, focusing on the latest progress since 2018. In addition, the structure and interface design of various types of neural microelectrodes have been comprehensively described and compared. This could be the key to simultaneously detecting electrochemical and electrophysiological signals.