Microbiology Spectrum (Dec 2023)
Distinct gut microbial communities and functional predictions in divergent ophiuroid species: host differentiation, ecological niches, and adaptation to cold-water habitats
Abstract
ABSTRACT Gastrointestinal microorganisms play a crucial role in host survival and adaptation, but information on host-specific selection or environmental factors that shape the microbiome in natural populations is limited. In this study, we employed 16S rRNA gene amplicon sequencing to investigate the composition and predicted the functions of gut microbiota of two ophiuroid species (Ophiura sarsii and its subspecies O. sarsii vadicola) from cold-water habitats across three geographically distant sea areas in the Northern Pacific Ocean. We also explored the potential influence of the host and environment on the microbiota. The two ophiuroids possessed diverse microbial communities, with Proteobacteria being the most dominant phylum in all four groups. Aliivibrio was the predominant genus in O. sarsii from the Bering Sea, while Candidatus Hepatoplasma was the dominant genus in O. sarsii from the Japan Sea and O. sarsii vadicola from the Yellow Sea. Predicted bacterial functions indicated that most of the pathways with significant differences belonged to metabolism and genetic information processing. Notably, no significant difference was observed between the two coexisting ophiuroid species in the Japan Sea. The high similarity in microbial communities between O. sarsii from the Japan Sea and O. sarsii vadicola from the Yellow Sea may be attributed to their analogous ecological niche. The host and the environment jointly shape the composition of the gut microbial community. The presence of specific microorganisms supports the ecological success of ophiuroids across diverse environments, providing a foundation for host adaptation to cold-water habitats. IMPORTANCE Gastrointestinal microorganisms are critical to the survival and adaptation of hosts, and there are few studies on the differences and functions of gastrointestinal microbes in widely distributed species. This study investigated the gut microbes of two ophiuroid species (Ophiura sarsii and its subspecies O. sarsii vadicola) in cold-water habitats of the Northern Pacific Ocean. The results showed that a combination of host and environmental factors shapes the intestinal microbiota of ophiuroids. There was a high similarity in microbial communities between the two groups living in different regions, which may be related to their similar ecological niches. These microorganisms played a vital role in the ecological success of ophiuroids as the foundation for their adaptation to cold-water environments. This study revealed the complex relationship between hosts and their gut microbes, providing insights into the role they play in the adaptation and survival of marine species.
Keywords