Ecosphere (Apr 2023)

Restoration and resilience to sea level rise of a salt marsh affected by dieback events

  • J. L. Rolando,
  • M. Hodges,
  • K. D. Garcia,
  • G. Krueger,
  • N. Williams,
  • J. Carr Jr.,
  • J. Robinson,
  • A. George,
  • J. Morris,
  • J. E. Kostka

DOI
https://doi.org/10.1002/ecs2.4467
Journal volume & issue
Vol. 14, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract The frequency of salt marsh dieback events has increased over the last 25 years with unknown consequences to the resilience of the ecosystem to accelerated sea level rise (SLR). Salt marsh ecosystems impacted by sudden vegetation dieback events were previously thought to recover naturally within a few months to years. In this study, we used a 13‐year collection of remotely sensed imagery to provide evidence that approximately 14% of total marsh area has not revegetated 10 years after a dieback event in Charleston, SC. Dieback onset coincided with a severe drought in 2012, as indicated by the Palmer drought stress index. A second dieback event occurred in 2016 after a historic flood influenced by Hurricane Joaquin in 2015. Unvegetated zones reached nearly 30% of the total marsh area in 2017. We used a light detection and ranging‐derived digital elevation model to determine that most affected areas were associated with lower elevation zones in the interior of the marsh. Further, restoration by grass planting was effective, with pilot‐scale restored plots having greater aboveground biomass than reference sites after two years of transplanting. A positive outcome indicated that the stressors that caused the dieback are no longer present. Despite that, many affected areas have not recovered naturally, even though they are located within the typical elevation range of healthy marshes. A mechanistic modeling approach was used to assess the effects of vegetation dieback on salt marsh resilience to SLR. Predictions indicate that a highly productive restored marsh (2000 g m−2 year−1) would persist at a moderate SLR rate of 60 cm in 100 years, whereas a nonrestored mudflat would lose all its elevation capital after 100 years. Thus, rapid restoration of marsh dieback is critical to avoid further degradation. Also, failure to incorporate the increasing frequency and intensity of extreme climatic events that trigger irreversible marsh diebacks underestimates salt marsh vulnerability to climate change. Finally, at an elevated SLR rate of 122 cm in 100 years, which is most likely an extreme climate change scenario, even highly productive ecosystems augmented by sediment placement would not keep pace with SLR. Thus, climate change mitigation actions are also urgently needed to preserve present‐day marsh ecosystems.

Keywords