Transport Problems (Jan 2007)
Classification of fault diagnosis in a gear wheel by used probabilistic neural network, fast Fourier transform and principal component analysis
Abstract
This paper presents the results of an experimental application of artificial neural network as a classifier of the degree of cracking of a tooth root in a gear wheel. The neural classifier was based on the artificial neural network of Probabilistic Neural Network type (PNN). The input data for the classifier was in a form of matrix composedof statistical measures, obtained from fast Fourier transform (FFT) and principal component analysis (PCA). The identified model of toothed gear transmission, operating in a circulating power system, served for generation of the teaching and testing set applied for the experiment.