Heliyon (Dec 2023)
Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria
Abstract
Essential oils (EOs) from Indian spices like Elettaria cardamomum (L.) Maton (small green cardamom), Syzygium aromaticum (L.) Merr. & L.M. Perry (clove), Cinnamomum zeylanicum Blume (cinnamon quills), and Cinnamomum tamala (Buch.-Ham.) T. Nees & C. H. Eberm (Indian bay leaves) exhibit a broad spectrum range of biological activity including antibacterial and antifungal activity. Yet, there is a lack of data regarding the antimicrobial activity of their formulations. Also, the link between the antimicrobial effect of individual EO with their chemical composition and molecular interaction with bacterial pathogens has not been systematically explored. Therefore, the objectives of the current study were to evaluate the antimicrobial activity and phytochemical characterization of EOs and to bridge the gap between them through in-silico molecular interactions. The antibacterial activity of EOs of four different spices and their formulations against foodborne pathogens such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was evaluated using the disc volatilization method. The chemical profile of the individual EO was determined through GC-MS analysis and molecular interactions of identified major components with bacterial proteins were carried out through molecular docking studies. All EOs and their formulations exhibited antibacterial activity ranging from 5.92 to 24.55 mm and 11–23.52 mm, respectively. Among all EOs, cinnamon and formulation C (cardamom: cinnamon- 2:1) exhibited the highest antibacterial activity. The composition of the EOs included sesquiterpenes, monoterpenoids, monoterpenes, and, phenylpropanoids such as (E)-cinnamaldehyde, δ-cadinene, α-copaene, eugenol, caryophyllene, eugenol acetate, methyl eugenol, menthadiene, eucalyptol, α-terpinyl acetate, and sabinene. Furthermore, docking study revealed that the abundant compounds from cinnamon EO mainly α-copaene and δ-cadinene had a high binding affinity towards the bacterial essential proteins which increases the bacterial susceptibility towards cinnamon EO. The selected EOs and their formulations were systematically analysed and they were effective against foodborne pathogens. The current findings suggest the application of these EOs against food pathogens with further research.