Cancer Management and Research (May 2019)

Tissue-specific and exosomal miRNAs in lung cancer radiotherapy: from regulatory mechanisms to clinical implications

  • Long L,
  • Zhang X,
  • Bai J,
  • Li Y,
  • Wang X,
  • Zhou Y

Journal volume & issue
Vol. Volume 11
pp. 4413 – 4424

Abstract

Read online

Long Long,1,* Xue Zhang,1,* Jian Bai,2,3 Yizhou Li,4 Xiaolong Wang,5 Yunfeng Zhou11Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People’s Republic of China; 2Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China; 3Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, People’s Republic of China; 4Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, People’s Republic of China; 5Department of Urology, Research Lab/LIFE-Zentrum, University of Munich (LMU), München, Germany*These authors contributed equally to this workAbstract: Lung cancer is the most prevalent and deadly malignancy. Radiotherapy is a major treatment modality for lung cancer. Nevertheless, radioresistance poses a daunting challenge that largely limits the efficacy of radiotherapy. There is a pressing need for deciphering molecular mechanisms underlying radioresistance and elucidating novel therapeutic targets for individualized radiotherapy. MicroRNAs are categorized as small noncoding RNAs that modulate target-gene expression posttranscriptionally and are implicated in carcinogenesis and cancer resistance to treatment. Overwhelming evidence has unraveled that tissue-specific miRNAs are essential for regulation of the radiosensitivity in lung cancer cells through a complex interaction with multiple biological processes and radiation-induced pathways. Moreover, exosome-derived miRNAs are a novel horizon in lung cancer treatment in which exosomal miRNAs act as potential diagnostic and therapeutic biomarkers of radiotherapy. In the present review, we discuss the mediation of key biological processes and signaling pathways by tissue-specific miRNAs in lung cancer radiotherapy. Additionally, we provide new insight into the potential significance of exosomal miRNAs in radiation response. Lastly, we highlight miRNAs as promising predictors and therapeutic targets to tailor personalized lung cancer radiotherapy.Keywords: lung cancer, microRNAs, exosome, radioresistance, personalized radiotherapy

Keywords