Bioactive Materials (Nov 2022)
MSCs-laden injectable self-healing hydrogel for systemic sclerosis treatment
Abstract
As a novel cellular therapy, the anti-inflammatory and immunomodulatory virtues of mesenchymal stem cells (MSCs) make them promising candidates for systemic sclerosis (SSc) treatment. However, the clinical efficacy of this stratagem is limited because of the short persistence time, poor survival, and engraftment of MSCs after injection in vivo. Herein, we develop a novel MSCs-laden injectable self-healing hydrogel for SSc treatment. The hydrogel is prepared using N, O-carboxymethyl chitosan (CS-CM) and 4-armed benzaldehyde-terminated polyethylene glycol (PEG-BA) as the main components, imparting with self-healing capacity via the reversible Schiff-base connection between the amino and benzaldehyde groups. We demonstrate that the hydrogel laden with MSCs not only promoted the proliferation of MSCs and increased the cellular half-life in vivo, but also improve their immune-modulating functions. The tube formation assay indicates that the MSCs could significantly promote angiopoiesis. Moreover, the MSCs-laden hydrogel could inhibit fibrosis by modulating the synthesis of collagen and ameliorate disease progression in SSc disease model mice after subcutaneous injection of bleomycin. All these results highlight this novel MSCs-laden hydrogel and its distinctive functions in treatment of chronic SSc, indicating the additional potential to be used widely in the clinic.