Micheliolide exerts effects in myeloproliferative neoplasms through inhibiting STAT3/5 phosphorylation via covalent binding to STAT3/5 proteins
Huijun Huang,
Jinqin Liu,
Lin Yang,
Yiru Yan,
Meng Chen,
Bing Li,
Zefeng Xu,
Tiejun Qin,
Shiqiang Qu,
Liang Wang,
Gang Huang,
Yue Chen,
Zhijian Xiao
Affiliations
Huijun Huang
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Jinqin Liu
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Lin Yang
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Yiru Yan
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Meng Chen
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Bing Li
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Zefeng Xu
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Tiejun Qin
b MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
Shiqiang Qu
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Liang Wang
c State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, China
Gang Huang
d Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
Yue Chen
c State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, China
Zhijian Xiao
a State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Ruxolitinib is a cornerstone of management for some subsets of myeloproliferative neoplasms (MPNs); however, a considerable number of patients respond suboptimally. Here, we evaluated the efficacy of micheliolide (MCL), a natural guaianolide sesquiterpene lactone, alone or in combination with ruxolitinib in samples from patients with MPNs, JAK2V617F-mutated MPN cell lines, and a Jak2V617F knock-in mouse model. MCL effectively suppressed colony formation of hematopoietic progenitors in samples from patients with MPNs and inhibited cell growth and survival of MPN cell lines in vitro. Co-treatment with MCL and ruxolitinib resulted in greater inhibitory effects compared with treatment with ruxolitinib alone. Moreover, dimethylaminomicheliolide (DMAMCL), an orally available derivative of MCL, significantly increased the efficacy of ruxolitinib in reducing splenomegaly and cytokine production in Jak2V617F knock-in mice without evident effects on normal hematopoiesis. Importantly, MCL could target the Jak2V617F clone and reduce mutant allele burden in vivo. Mechanistically, MCL can form a stable covalent bond with cysteine residues of STAT3/5 to suppress their phosphorylation, thus inhibiting JAK/STAT signaling. Overall, these findings suggest that MCL is a promising drug in combination with ruxolitinib in the setting of suboptimal response to ruxolitinib.