Journal of Advances in Modeling Earth Systems (Jan 2019)

Soil Chemistry Aspects of Predicting Future Phosphorus Requirements in Sub‐Saharan Africa

  • Daniel Magnone,
  • Vahid J. Niasar,
  • Alexander F. Bouwman,
  • Arthur H. W. Beusen,
  • Sjoerd E. A. T. M. van derZee,
  • Sheida Z. Sattari

DOI
https://doi.org/10.1029/2018MS001367
Journal volume & issue
Vol. 11, no. 1
pp. 327 – 337

Abstract

Read online

Abstract Phosphorus (P) is a finite resource and critical to plant growth and therefore food security. Regional‐ and continental‐scale studies propose how much P would be required to feed the world by 2050. These indicate that Sub‐Saharan Africa soils have the highest soil P deficit globally. However, the spatial heterogeneity of the P deficit caused by heterogeneous soil chemistry in the continental scale has never been addressed. We provide a combination of a broadly adopted P‐sorption model that is integrated into a highly influential, large‐scale soil phosphorus cycling model. As a result, we show significant differences between the model outputs in both the soil‐P concentrations and total P required to produce future crops for the same predicted scenarios. These results indicate the importance of soil chemistry for soil‐nutrient modeling and highlight that previous influential studies may have overestimated P required. This is particularly the case in Somalia where conventional modeling predicts twice as much P required to 2050 as our new proposed model.

Keywords