International Journal of Nanomedicine (Mar 2015)
Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode
Abstract
Guangxian Zhong,1,2,* Ruilong Lan,3,* Wenxin Zhang,1,4 Feihuan Fu,5 Yiming Sun,1,4 Huaping Peng,1,4 Tianbin Chen,3 Yishan Cai,6 Ailin Liu,1,4 Jianhua Lin,2 Xinhua Lin1,4 1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, 2Department of Orthopaedics, 3The Centralab, First Affiliated Hospital of Fujian Medical University, 4Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, 5Department of Endocrinology, The County Hospital of Anxi, Anxi, 6Fujian International Travel Healthcare Center, Fujian Entry-Exit Inspection and Quarantine Bureau, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A sensitive electrochemical immunosensor was developed for detection of alpha-fetoprotein (AFP) based on a three-dimensional nanostructure gold electrode using a facile, rapid, “green” square-wave oxidation-reduction cycle technique. The resulting three-dimensional gold nanocomposites were characterized by scanning electron microscopy and cyclic voltammetry. A “sandwich-type” detection strategy using an electrochemical immunosensor was employed. Under optimal conditions, a good linear relationship between the current response signal and the AFP concentrations was observed in the range of 10–50 ng/mL with a detection limit of 3 pg/mL. This new immunosensor showed a fast amperometric response and high sensitivity and selectivity. It was successfully used to determine AFP in a human serum sample with a relative standard deviation of <5% (n=5). The proposed immunosensor represents a significant step toward practical application in clinical diagnosis and monitoring of prognosis. Keywords: electrochemical immunosensors, three-dimensional nanostructure gold electrode, square-wave oxidation-reduction cycle, alpha-fetoprotein